Embedded Systems
Design and Modeling

Embedded Systems Design and Modeling

Outline

O Introduction
O Finite state machines as actors

0o Composition techniques:
= Side-by-side synchronous
= Side-by-side asynchronous
= Cascade
= Hierarchical models

Embedded Systems Design and Modeling

Introduction

O Important engineering principle: larger,
more complex systems can be built by
putting together smaller, simpler ones

O Definition: putting systems together =
composition of systems
O Our focus: composition of state machines

O In general, this can be guite complicated

and confusing:

= Compositions with the same syntax can have
different semantics

Embedded Systems Design and Modeling

Important Questions

O How to compose a new system
considering:
= systematic design?
= systematic analysis?
= effective computer program manipulation?

O Which subsystems are required to make
bigger systems?

o How to check whether the system satisfies
Its specification in its operating
environment?

Embedded Systems Design and Modeling

Composition Techniques

o When the machines react?

1. Concurrent composition
Synchronous composition (simultaneous)
Asynchronous composition (independent)

2. Hierarchical: a state is itself another FSM
O Relative position of the machines?

1. Side-by-side

2. Cascade

3. Feedback

Embedded Systems Design and Modeling

Side-by-side Synchronous

O Assumptions:

= Inputs and outputs of the
actors are disjoint

m State variables can be
disjoint or shared

m The actors A and B react
simultaneously

= The overall actor (C)
reacts simultaneously

Embedded Systems Design and Modeling

L] a1

5) 0?

I'o, l.‘]" j’
‘u‘ . ‘,_.];' f
\1“I]_ i ! (}]’;r
\“‘: ‘ C t "‘Ilf
i» 0?2

Example

outputs: a, b : pure
outputs: a, b : pure

output: a: pure

=

trie | a frue |

true / A
true /[b
output: b : pure
frue / b | b true { a, b b
F—-—-\ >
S a
(s1, 54) ((s2,53))
true / b B
true / C

C

7

Embedded Systems Design and Modeling

Side-by-side Synchronous Features

O It i1s simple to design and analyze
0o Composition of two FSM’s Is an FSM

o If the two state machines are
determinate, the composition FSM is also
determinate

O In general, It iIs compositional: a property
of components is applicable to the
composition

O There are often unreachable states

Embedded Systems Design and Modeling

Formal Definition

A = (Statesy,Inputs,,Outputs,,update , ,initialState,)
B = (Statesg,Inputsy.Outputsg, updateg.initialStateg)
O Synchronous side-by-side:
Statesc = Statesy x Statesg
Inputs. = Inputs, X Inputsy
Outputs. = Quiputs, X Outputsg
initialStatec = (initialStatey , initialStatep)

Embedded Systems Design and Modeling

Formal Definition (Continued)

updatec((sa.sg), (ia.ig)) = ((s4.53). (0a,08)).
where
(s, 04) = update,(sa,is).

and

(sg.op) = updateg(sg.ig).

tor all s4 € Statesa, sp € Statespg, i € Inputs,, and ig € Inputsg.

10

Embedded Systems Design and Modeling

Side-by-side Asynchronous

O The FSM’s can react at any point and
Independent from each other

O Two possible semantics:

= C reacts when either A or B react (semantics
1, also called interleaving)

= C reacts when A, or B, or both react
(semantics 2)
O In both semantics no prior knowledge
exists regarding the order of A or B
reaction (nondeterministic)

11

Embedded Systems Design and Modeling

Example (Semantics 1)

outputs: a, b : pure

output: a: pure
true / a

output: b : pure

true /

true / b

B

C

outputs: a, b : pure

trite | a

trie /

true /

true / b true / b

trive [a

!

true

true /

Embedded Systems Design and Modeling

Note that the machine is
nondeterministic!

12

Formal Definition (Semantics 1)

updatec((sa.sg). (ia,ig)) = ((sx.58), (04,08));

f fy . X g B
(s4.04) = update, (sa.ia) and sz = sp and oy = absent

(sg,0%) = updateg(sg,ig) and s’y = s4 and o)y = absent

for all sq4 € Statesa, sp € Statesp, ia € Inputs,, and ig € Inputsg

13

Embedded Systems Design and Modeling

Example With Shared Variables

Em

request

>

shared variable: pending: 1nt
inpul: request: pure
outputs: doneA, donell : pure

inpul: reguest: pure
output: done: pure

reqiiest

—> idle)

pending =) request

pending = 0 A —request/
pending = pending — 1

—reguest

pending = pending + 1

done| doned

input: reguest: pure
output: done: pure

—request |
. request i pending = 0/done
request /\ pending = 0/ done pending := pending — 1
_.., .
request (:SE ving request | done
reqguest /

pending = 0 A —request |

pending .= pending — 1

pending = pending + 1

i

done | donel

-—

14

Server Example Points

O Shared variables create difficulties:
= Accesses must be atomic
= Otherwise, system won’t work properly
= May not be always possible
= Write before read or read before write?

O Semantics 1 Is better because the input
goes to both machines

= No input will be missed

o If inputs were independent, semantics 2
would be better

15

Embedded Systems Design and Modeling

Cascade Composition

O The output of one FSM feeds the input of
another FSM

= Also called serial composition
O It has to type check input/output

(Siares, Inpurs, Ourpinis, upddare, indtialSiaie)

—_ (States . Inpurs o Owtpnils 5, updote 5. initialSiate 5)
— A SRS 4 PHIS 4 A A

(Stafesg, fnpaits g, OWrpuis g, updateg, iniialSiareg) -

16

Emk

Cascaded Composition Example

input: a: pure
output: b: pure

al alb

i e

true / b b

1{:],}r ,r"l

input: b: pure
output: c¢: pure

b/

true [/

input: a: pure
output: ¢: pure

Embedded Systems Design and Modeling

17

Example (Pedestrian Light FSM 1)

variable: pcount: {0,--- 55}
input: sigR: pure
outputs: pedC, pedR : pure

peount ;=0 peount = 55 [pedR

red

stgR { pedG
peount 1= 0

peount ;= peount + |

Embedded Systems Design and Modeling

18

Example (Car Light FSM 2)

variable: count: {0,--. 60}
Inputs: pedestrian : pure count < 60 /
outputs: sigR, sig(, sigy : pure count 1= count + 1

count = 60 / sigG
count := ()

count ;= count+ 1

count ;= 1) ‘
Count > 60 /[sigy
count > 5 [sigR count := 0

count 1= ()

.....

19

Embedded Systems Design and Modeling

Example (Cascaded FSMs

variable: cowrt: [0, .. 60}
inpuls: pedestrian - pure
oudputs: gk, sigls, sigh @ pure

cownt = 6/
ceoird = oot <= 1

.,

greeﬁ

conirnt 2 6y §owipls
cenerd 2= (1

count := caunt + 1 :

cornnt =1

Pedesirian & cownt =60 [siek
cawrnt =)

ount = 60 [/ sigl
comnt = 5 sigh e 1=}

cepnt = 1)

conint 2= cenini 4 |

pedestrian A ocount < 60 /

Lo s= count+ 1

> sigy
> sigG

sigR

sigR

variable: peownr: {0,--- 55}
input: sigh: pure
outputs: ped(s, pedi: pure

’pedG
bpedR

peount’-= 1 peonnt = 55 [pedR

red

sigh | pedG
peount 1= ()

peouni .= peount + 1

Example: Composition Machine
Assuming Synch. Comp.

variables: cown: {0, 60F, peowns: {0, - - 55]
input: pedestrian: pure

oulpulss sieh. siv(i, sie¥, pedl, ped(F: pure count < 60
- CORRT D= coatid - |

T peoknl = peount+

coiil == count+ 1

poownl 1 — pooand + | m Jedestrian & commt < 860 [

- O e - I 5 B
\"_ red, green pedestrig N :m.:.u‘.;; Gl /ol pending, green }; count = count + 1
conmi =1 CRMNE t= o) " Apownt 1= oo + |
poonnt i= eotrid =5 #igR ’

cou =0 s £
coygr = 0N sigl
yelbow, green iy,

count -— eount+ 1
et 1= poowet + |
peonnt == 53 [pedR count = 5 [sigR, pedG; unsafe states
oot t= [
peennt i=A]
Caonent <2 Gl ¢
COUNE = Caunt + I

r
v

coun\= ol [sjpl green, red pedestrian s count < ol [

! il

- predesiiien Moo = 0 2 sigY -) _
o L= counf + 1% red, red i 2= 1 pending, red peBm =Rl !

ot = 60/ sigl

coneert 7= {1 21
Embedde »

counl = eoumt + |

Example: Composition Machine
(After Removing Unsafe States)

variahles: couar {0, - 60}, peae: {0, -+ 53]
mpul: pedestricn: pure

0o Why can the
unsafe states be cmzcomr,
removed? L

O B/c they are
unreachable

O The semantics
allow us to
modify the
composition
machine

Embedded Systems Design and

Synchronous Cascade Consideration

O Two possible setups for cascade
composition:
= Synchronous (like the previous examples)
= Asynchronous (Chapter 6)

O Synchronous means:
m Reaction of C means A reacts then B reacts

= To avoid timing issues, we assume all
reactions are instantaneous

= This also means they are simultaneous

= This doesn’t violate causality, I.e., B still

depends on A
Embedded Systems Design and Modeling

23

Hierarchical State Machines

0o When one (or more) state of an FSM is
Iitself another FSM

= The inner FSM is called a “refinement”

O There are different semantics for the
composition FSM:
= What happens if two reactions are possible in
the refinement and the top level?

Priority given to the refinement (depth-first)
Priority given to the top level state (preemptive)

= The outputs might be produced at both levels

24

Embedded Systems Design and Modeling

Hierarchical State Machines
Reaction

O The reactions are still simultaneous and
INstantaneous

O Note that this composition allows for the
OR operation

o If two outputs are 81/ OR state (being B
P 47N, means being in C or D)

produced, they PoWPre

are required not &2/
to have a conflict: g
_ refinement AN
o Define sequence b
g pU®
(shown by ;) 2a]

25

Embedded Systems Design and Modeling

Depth-First Semantics

g1/ a

g3/ a3

/—\
= g1 A\gs / as; a
o hmge)@ w1 nes fa
ol ol O
2 | a —g1/N\gs [aa
g1Ng3 [a

E d Systems
mbedded Sys g1Ngsy /a3, ay

Preemptive Transitions

O Another way to ensure the outputs won’t
conflict: preemptive transitions

O The guards of the preemptive reaction (at
the top level) are evaluated before the
refinement reacts

O If true, the refinement will NOT react

O Syntax? Use a red circle to specify a
preemptive transition

27

Embedded Systems Design and Modeling

Preemptive Transitions Example

g3/ a3
7
(™)
_Pv
g4 / as
g1/ ai —g1Ag3 /a3
y &
T
g/ a
g1/ ai

Embedded Systems Design and Modeling

28

Reset Transition

0 When entering a refinement for the first
time, always go to the initial state

0 What to do when we reenter a
refinement?

O Two answers:

1. Always go to the initial state (reset transition)
Reset transition is represented by a hollow arrowhead
(as shown Iin previous example)
2. Refinement resumes in whatever state it was
last in (history transition)
Represented by a solid arrowhead

29

Embedded Systems Design and Modeling

Notation Example

input: a: pure

output: b: pure alb
Podih o
& 7
a/
alb alb
/\ r_\

SN

alb

(o)

Embedded Systems Design and Modeling

30

History Transition Example

g1/ a

A

B

g2/ a

g3/ a3 |
dhe
g4/ ay 81 N84 / aj g1\ g3 / asz,daj
y i _
g/ a
~g1/\g4 [as —g1/\g3 / a3
g1N—g3 / a
K_\
(B, D)
U .
g1 N\gq [as;a

Embedded Systems Design 82/ @

A Real Example

volatile uint timerCount =
vold ISR (wvoid) {

O Consider a
program that
does something
for 2 seconds and

then stops -

int main(void) |

O One possible
Implementation is
shown on the
right

J

0;

. disable interrupts
if({timerCount 1= 0) [
timerCount--;

}

. enable interrupts

// 1nitialization code
SysTickIntRegister (&ISR);
. // other init
timerCount = 2000;
while (timerCount != 0) {
. code to run for

}

Embedded Systems Design and Modeling

72 seconds

Example Implementation

volatile uint timerCount = 0;

0 What composition void ISR(void) {

. disable interrupts

IS most suitable? g: il < o g
O Let’s name the } RETCROnE Y
different states, . enable interrupts
" }
note that position S
IN the program IS // initialization code
SysTickIntRegister (&ISR);
part of the state Y it ek
- timerCount = 2000;
0 Next: draw the A > hile(timerCount != 0) {
state diagram of B < code to run for 2 seconds
}
eaCh Component C..T}whatever comes next

}
Embedded Systems Design and Modeinngy

State Diagrams

variables: rimerCount: uirt

input: asserf: pure
output: refurn: pure

[return

assert !

timerCount := timerCount - [

_________ =

&~

timerCount 0 [

timerCount = 2000

Embedded S

timerCount =0 |

timerCount=10 /

34

Concurrent Composition?

variables: timerCounr: uint timerCount =0 /
input: assert; pure
output: refurn: pure

timerCount = 200N timerCount £ 0 /

interrupi /

timerCount =0 ["-,_n'mm‘.f' ou--

timerCount # 0 / timerCount-- timerCount # 0 /

timerCount # (0 /

S i

timerCount =0 [

Emk

L timerCount--

35

Observations

O Concurrent composition (synchronous or
asynchronous) is NOT suitable here b/c:

O There are transitions that will not occur In
practice (such as A,D to B,D)

O Since interrupts have priority over
application code, concurrent compositions
are not the right choice here

O Other compositions?

36

Embedded Systems Design and Modeling

FSM of an Interrupt Controller

\ assert /
__—

1--.___ ___,....--""""'
deassert /
return / handle
deassert & return/ [acknowlege
assert /

Active e ™
e

Pending /

return & priority & !deassert
| acknowledge

deassert & 'return

Embedded Systems Design and Modeling

37

FSM of Our Example

int main (void} {
[/ initialization code
SysTickIntRegister (&ISR) ;
. I/ other init
timerCount = 2000;
while {(timerCount != 0) |
. code to run for Z seconds

" eo.., Deassery |

h.ll'll.‘"P-----. }

deassert & return)/ T2 h'"-l'\:-'l"‘v-"

daser] |/

retunm & -pFl.nnflir-&_ gl asnert
L acEnowledge E

Note that the states are
sharing their refinements

deassert & 'return

Ivmlatile uint timerCount = 0;
void ISR (wvoid) {
. disable interrupts
if {timerCount != 0) {
timerCount—-;
}
. enable interrupts
}
Empeadead Sysieins vesign ana ivioaeling

Composition Using Preemptive
Transitions

O Note that this abstraction assumes that an
Interrupt Is always handled immediately
upon being asserted

assert [

~'L Inactive).

. return/ S

int main(wvoid) {1 volatile uint timerCount = 0;

// initialization code void ISR ({void) |

SysTickIntRegister (&I5R) ; .. dizsable interrupts
A -* Z .'?.' l: :I D + = = ™ e | o—];-: '}
B .. 44 other init if{timerCount '= 0} {

=# timerCount = 2000; E |=» timerCount—-;

while(timerCount '= 0] {]

- code to run for 2 seconds . enable interrupts
Cl=>

39

Embedded Systems Design and Modeling

Interrupt Handling Observations

O History transition results in product state
space

O Hierarchy reduces the number of
transitions compared to synchronous and
asynchronous compositions

Embedded Systems Design and Modeling

40

Homework Assignments

o Chapter 5 homeworks: 1, 2, 3, 5
(required)

O The rest: optional

O For Tuesday 1403/12/24

Embedded Systems Design and Modeling

41

